ION AGE

Forecasting battery lifetime

Quality assessment

How good is my battery right now?

Long-term planning

When do I have to react to a failing battery?

'Data driven prediction of battery cycle life before capacity degradation' by K.A. Severson, P.M. Attia, et al.

Nature Energy vol. 4, 383–391 (2019)

Fig. 11 Proceptibility professions of "Mathematic based and here program by infinite field 100 cycles, 4. Charactery results for the loss of 2000 cycles, 4. Charactery results for the loss of results and the provide state of the loss of the lo

Original Paper

feature engineering

linear regression

first 100 cycles

Ion Age

raw data

deep learning

any 20 cycles

124 cells ()

Inside One Cycle

Time-Scale Features

Scalar Features

Internal Resistance (Ω)

Total Charge (Ah)

Total Time (minutes)

Temperature Stats (°C)

Data Processing

Challenges

- Charging conditions not uniform
- Time measurements not uniform

Data Processing

Challenges

- Charging conditions not uniform
- Time measurements not uniform

Solutions

- Focus on discharge curve
- Resample uniformly across voltage range

MODEL

Cycle

• Current cycle

Remaining cycles

Engineering

- Parallel job runs
- Keep track of test setups and results
- Free hardware access
- Easy to work in a team

=	Goog	fe C	Toud Platform 🗣 🗤	400 W	19.0			
쯩	Jobs		THEM TRANSMO JOB					
52	ML Engres to now All Platform There is peeds							
æ								
9			346 B	Tape	Pepelline	(Insta line	- File	
Ð			ion_ege_20190701_142258	CLeatern code helrang	161	Ad 1, 2019, 2 23:00 PM	19	
18			lon_ege_20190701_142244	Custom code matering	:660	Jul 1, 2010; 2:22:40 PM	11	
			lon_age_20100701_142200	Classors obde training	Mas	.A.I.1, 2010; 2:22:05:PM	19	
Ť			ion_age_20190303_141458	Cumuro code maining	1660	JAI 1, 2010, 21002 PM	11	
		•	lon_age_20190829_135454	Custom code training	No	Am 29, 2019, 1.54.38 PM	20	
		•	ion_ope_20196629_135354	Gustom code training	30	Ain 29, 2019, 1 \$2,66 PM	14	
	17		the are Overlage sports	Provide state realities	All I	No. 20, 2010 1-017-02 (00)		

Current cycle

• Remaining cycles

Predictions – Remaining cycles

Mean Absolute Error – Current cycles

Mean Absolute Error – Remaining cycles

Who we are

Hannes Knobloch

hannes-knobloch

hk@hasacle.de

Wendy Chang

changwendy@gmail.com

Adem Frenk

adem.frenk@gmail.com

https://github.com/dsr-18/long-live-the-battery

https://bit.ly/2Lx0ywE

Q & A

Backup

Recap

- Predicting battery cycle life is a relevant but tough problem
- Measurement data requires a lot of preprocessing for deep learning
- It's hard to have an intuition what makes a complex model perform well
- Having a solid infrastructure pays off
- CNNs work well for time series data

ION AGE

Forecasting battery life time

What did we do?

Predict the total lifetime of batteries, measured in remaining charging cycles

vastly different lifetime expectations

forecasts were expensive and time-consuming

Cell degradation

Cell degradation

ION AGE

Forecasting battery lifetime

